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The effect of the electromagnetic force (or Lorentz force) on the flow behavior around a

circular cylinder is investigated by computation. Two-dimensional unsteady flow computation
for Re= l(j is carried out using a numerical method of finite difference approximation in a

curvilinear body-fitted coordinate system by solving the momentum equations including the

Lorentz force as a body force. The effect of spatial variations of the Lorentz forcing region and

forcing direction along the cylinder circumference is investigated. The numerical results show
that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force

of circular cylinder cross-flow, leading to reduction of drag.
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Nomenclature---------
B" : Magnetic flux density vector (tesla)
D : Cylinder diameter
E, : Electric field intensity vector (volt/rn)
In : Vortex shedding frequency

Jj : Electric current density vector (ampere/ar-
ea)

N : Interaction parameter (= JoBoD/ (p U/) )
Re : Reynolds number(=UoD / II)
s, : Strouhal number (=1nD/ Uo)

t : Non-dimensional time (= Uot / D)
Us : Upstream flow velocity

p : Fluid density
IJ : Electric conductivity (rnho/rn)
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II : Kinematic viscosity

1. Introduction

MHD (Magnetohydrodynamics) flow has been
a subject investigated by many researchers since

Ritchie succeeded in pumping water using the

Lorentz force in 1832. Recently, along with the
attempts to explore MHD propulsion (Kim and

Lee, 1997) and MHD power generation, efforts to

control the fluid flow using the electromagnetic
force (or the Lorentz force) have been made by

many investigators. Henoch and Meng(I99l) and

Nosenchuck and Brown (1993) used the Lorentz

force to retard the transition to the turbulent
boundary layer and reduce frictional drag force.

In the recent International Symposium on

Seawater Drag Reduction in Rhode Island, USA,
a number of works using the Lorentz force to

reduce the drag in turbulent flows were reported
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Fig. 1 Circular cylinder for electromagnetic flow control (Kim & Lee, 2000):(a) Cross-sectional view; (b)
Installation of electrodes and magnets

(see Meng, 1998) along with other conventional
flow control methods.

Kim and Lee(2000) conducted an experiment
using a circular cylinder where the electrodes and
magnets were installed in an alternate sequence in
the axial direction of the cylinder to generate the
Lorentz force in the circumferential direction.
They installed the electrodes and magnets in the
region of 70°- 130° along the cylinder circumfer
ence where the flow separation mainly occurred.
They found that the Lorentz force applied
parallel to the flow direction reduced the drag
force significantly, especially at low-Reynolds
number flows. In the paper, the visualization of
the suppression of flow separation and the reduc-

tion of a width of the wake region behind the
circular cylinder were clearly demonstrated. Kim
and Lee(2001) also confirmed experimentally
that the Lorentz force could effectively suppress
an oscillatory lift force acting on a circular
cylinder by applying both continuous and time
pulsating Lorentz forces. Figure I shows the
schematic description of the circular cylinder used
by Kim and Lee(2000).

In the present work, a computational investi
gation is carried out to study the effect of varia
tion of the Lorentz forcing region and the forcing
direction at Re=lfl- on the flow, drag and lift of
the circular cylinder used in the experimental
investigation of Kim and Lee (2000) . Four types
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Table 1 Comparison with the previous computations for Re= I<Y! without Lorentz force

Case
Time-step Onset of Strouhal CL Averaged
(non-dirn.) Oscillation (t) number amplitude CL

Present"
0.02

44.4
0.161 0.26 1.165

Computation (approx.)

Karniadakis
0.018 72 0.179

(1989)

Braza (1990) 0.02 60 0.165 0.37 1.253

Engelman
0.026-0.033 0.161-0.172 0.35 1.4-1.42

(1990)

Roshko's
0.167

(1954)

Williamson's
0.164

(1988)

" The lateral boundary is limited to y/D= ±5

The Lorentz force is generated in a conducting

fluid by the vector product of the current density

vector, Jj (ampere/area), and the magnetic flux

density, B; (tesla), as eijJjBk where the

subscript implies the component of the

coordinates (x, y, z) and eijk is the alternating

permutation tensor. The electric current density

vector is described by the Ohm's law of Jj=(J
(Ej +ej/mu,Bm ) where (J is the electric conduc-

force is applied in three regions along the cylinder

circumference: 20°-80°, 70°-130°, and 120°

- 180° from the fore stagnation point for both

upper and lower sides of the cylinder.

2. Governing Equations
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Fig.4 Computed histories of the lift (a) and drag (b)
coefficients for Re= I<Y! without Lorentz
force
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Fig. 3 Extended view of the grid system used in the
present computation

of the Lorentz forcing are chosen in the com

putation: circumferential Lorentz forcings

parallel and opposite to the flow and normal

Lorentzforcings inward to and outward from the

cylinder circumference. Each type of the Lorentz

Fig. 2 Domain for flow computation and its coor
dinate system
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Fig. 5 Types of the Lorentz force in the computation

tivity and Ej is the electric field vector (volt!m) .

When the electric current induced by the magnetic

field is small, i.e., CjlmUJ3m=O, the current density
becomes simply fj=(JEj, where Ul=i.u, u) is the

fluid velocity vector. The non-dimensional form

of the momentum equations including the Lorentz
force as a body force can be expressed, by using

Uj=uJ/ o; t= Uot*!D aEj=a* EJ/I» and

Bj=BJ!Bs where the asterisk denotes the
dimensional quantity, as

aUi aUi_ ap I (flUi N( -"C'B) ()-at+ UJ aXj - - aXi+Re aXj + (JCiiJr.Ljj k 1

where p is the pressure, Re= UoD!v (Reynolds
number), v the kinematic viscosity, D the

cylinder diameter, N=foBoD!(pU02
) (Interac

tion parameter), Bs the characteristic magnetic



Numerical Investigation of Cross-Flow Around a Circular Cylinder at a Low-Reynolds-«- 367

Table 2 Computed time-averaged drag and lift coefficients under the various Lorentz forces at Re= 1()l

LF CL
Strouhal

LFmode Case CDP CDf CD number
region Amp.

Sn
No LF - 0.86 0.31 1.16 0.26 0.16

Positive 20-80 PI 0.58 0.92 1.50 0.13 0.23

LF 70-130 P2 0.15 1.06 1.21 0 0

120-180 P3 0.36 0.70 1.05 0 0

Outward 20-80 01 0.31 0.25 0.56 0.4 0.14

LF 70-130 02 1.29 0.36 1.64 0.60 0.16

120-180 03 1.67 0.40 2.07 0.44 0.16

20-80 11 1.45 0.37 1.82 0.18 0.17

Inward LF 70-130 12 0.51 0.27 0.78 0.05 0.15

120-180 13 0.11 0.24 0.34 0.63 0.15

20-80 Nl 0.95 -0.42 0.53 0.63 0.14
Negative

70-130 N2 3.12 -0.27 2.86 2.36 0.13
LF

120-180 N3 2.39 0.12 2.52 2.27 0.14

Inward (I20-180) &
13+01 0.02 0.23 0.25 0.58 0.15

Outward (20-80)

Inward-normal
IF 0.79 0.32 1.11 0.27 0.16

(0-360)

Outward-normal
OF 0.92 0.32 1.24 0.25 0.16(0-360)

strength, J0 the characteristic electric strength,
and U« the undisturbed upstream velocity. In the

present investigation, the important physical

parameters are the Reynolds number (Re) , the

Strouhal number(Sn=lnD/Uo where In is the
vortex shedding frequency), and the interaction

parameter (N) which implies the ratio of the

applied electromagnetic force to the fluid inertia

force.

3. Numerical Analysis

A time-dependent two-dimensional incom
pressible flow around a circular cylinder is di

rectly calculated at Re = 1ff by solving the
Navier-Stokes equations including the Lorentz

force as a body force. The finite difference

approximations are used to discretize the conti

nuity and momentum equations transformed to a

body-fitted coordinate system (~, TJ). A second
-order central differencing method is adopted for

the diffusion and source terms. The convective

term in the momentum equation is approximated
employing the third-order accurate QUICK

(quadratic upstream interpolation for convective

kinetics) scheme following Hayase et al, (1990)

which is known to be stable and fast-converging.
An unsteady SIMPLE-C (semi-implicit pressure

linked equation-consistent) velocity-pressure

correction algorithm with a staggered grid system

is employed for the curvilinear Navier-Stokes

equations.
Figure 2 shows the computational domain

where the origin of the coordinate (x=O, y=O) is

located at the center of the circular cylinder. Fluid
flows in the positive x-direction and the y-axis is

normal to the flow direction. The boundary con

dition of the undisturbed uniform flow of Uj=
(Uo,O) is imposed at the upstream, the upper and
lower boundaries. The Neumann outflow condi

tion is imposed at the downstream, i.e. OUj/ox=
o which was used by Karniadakis(l989) with
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Fig.6 Computed instantaneous pressure contours and corresponding streamline patterns at N=20 and
Re=IOZ for the case of Inward-normal LF at 8=120'-180'

reasonable results. The upstream and downstream
boundaries are located at xlD= -10 and 40,
respectively, and the upper and lower boundaries
are located at ylD=5 and -5, respectively.

Figure 3 shows the grid distribution around the
circular cylinder used in the computation. The
grid system is of a He-type rectangular domain
where the Cartesian coordinates of (x, y) are
transformed to the generalized body fitted
coordinates of (~, 7]). The total numbers of the
nodes of the grid in ~ and 7J directions are 190
and 94, respectively, and the number of the grid
nodes in the ~-direction distributed on the half
cylinder surface is 67. The grid system was
generated by solving an elliptic-type partial
differential equation.

The cross-flow around a circular cylinder at
Re= Iff belongs to the pure Karman vortex

range where the regular Karman vortex street is
formed and the Strouhal number S" is found
experimentally to be 0.16-0.17(Norberg, 1994).
The computational results of the drag force
coefficient and the Strouhal number obtained by
previous investigators show that the values range
from 1.2 to 1.5 and from 0.16 to 0.18, respectively,
as shown in Table I. In the table, tindicates the
non-dimensionalized time defined as t= UtiD.
In the present computation, the blockage ratio of
ylD=5 is 10 % and the drag and lift coefficients
and the Strouhal numbers in Table I are the.
values corrected according to the blockage ratio
based on a constant mass-flux. The correction
equation is CD=CD'(I-A/s) 2 where CD', A, and
S are the computed drag coefficient, the projected
frontal area (D X L), and the width of the com
putation domain (W) times the cylinder length
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Fig.7 Computed instantaneous pressure contours and corresponding streamline patterns at N=20 and
Re=I(f for the case of Outward-normal LF at 8=20°-80·

(WXL), respectively.
Figure 4(a) shows the time history of the lift

force coefficient where after a certain time step the
lift coefficient begins to oscillate implying that the
symmetry of the steady flow separation breaks
down. In the stage of the periodic vortex shedding
in Fig. 4(a), the lift coefficient oscillates within
the amplitude of about 0.26. Literatures suggest
that the computed lift coefficient varies with an
amplitude in the range of 0.35-0.37 (Persillon et
al., 1998; Engelman, 1990). Figure 4(b) shows
the time history of the drag force coefficient. The
phase-averaged drag coefficient (CD) and the
Strouhal number(Sn) in the regularly oscillating
region in Fig. 4(b) are found to be 1.17 and 0.16,
respectively. The flow begins to oscillate
approximately after t=44.4 which is somewhat
earlier than the result of Karniadakis (1989) in

which the onset of oscillation started at time t=
72. The computation for y/D=10 is conducted to
check the dependency of the present code on the
vertical boundary distance in the case without
Lorentz force. The averaged drag coefficient is
found to be 1.21 which is slightly larger than the
value for y/D=5. The Strouhal number for y/
D=lO is found to be 0.16 which is very close to
the value at y/D=5. In general, it would be
desirable to choose the vertical boundary distance
to be y / D >10 to avoid the blockage -effect, The
present computation without Lorentz force shows
difference to some extent from those of other
researchers except for the values of the Strouhal
number. One reason for the difference is due to
the narrower computation domain used in the
present work. For the purpose of investigating the
effect of the local Lorentz forcing on the flow
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Fig. 8 Computed instantaneous pressure contours and corresponding streamline patterns at N =20 and
Re=IOZ for the case of Positive LFat 8=70·-130·

around a circular cylinder, the blockage effect
may not be of significant concern, provided the
computations are performed under an identical
inflow condition for various local Lorentz
forcings. Thus, for the sake of quick convergence
and the consequent computation-time saving, the
boundary size of y/D=±5 was chosen.

The Lorentz forcing regions along the cylinder
circumference are divided into the following three
cases: before the flow separation point(8=20°
- 80· from the fore stagnation point), within the
region where the flow normally separates (70·
-130°), and after the flow separation point (120·
-180°) on both of the upper and lower sides of
the circular cylinder. The Lorentz force is applied
in the circumferential and radial directions of the
circular cylinder. In the circumferential direction,
the Lorentz force is applied in the direction of the
flow (Positive Lorentz force (LF» or opposite to
the flow (Negative LF) and, in the radial direc-

tion, the Lorentz force is applied inward to (In
ward-normal LF) or outward from the cylinder
surface (Outward-normal LF). Figrue 5 shows
each type of the 15 forcing cases taken into
account in the present computation. The Lorentz
force distribution in the radial coordinate (r) of
the circular cylinder is regressed in the form of C1

exp{- C2 r) showing an exponential decay where
C1 is the constant linearly proportional to the
applied Lorentz force strength and C2 is the
constant related to the width of the electrode and
magnet. Both Cl and C2 are the functions of
width of electrode and magnet. The three
-dimensional computation was carried out to ob
tain the electric and magnetic field potential
functions to calculate the Lorentz force distribut
ion. Under the electromagnetic configuration as
shown in Fig. 1(b), the Lorentz force is
periodically distributed in the axial direction of
the circular cylinder. The averaged Lorentz force



Numerical Investigation of Cross-Flow Around a Circular Cylinder at a Low-Reynolds-«- 371

Fig. 9 Computed instantaneous pressure contours and corresponding streamline patterns at N =20 and Re=
lQ'! for the case of Negative LFat 8=20.-80°

in 'the axial direction is used in the present two

dimensional flow computation. The interaction

parameter at the cylinder surface (r =0) is set to
be N =20. The difficulty encountered was that

our experimental capability was limited to 103 <
Re< 10', whereas the numerical capability was

limited to Re<200. Thus, no direct comparisons

of the numerical results with the experimental
results could be made. However, since the com

putational reliability at Re = I~ was higher, we

performed the computation at this low Reynolds

number to investigate the effect of the local

Lorentz forcing.

For the Reynolds number range of °(103
)

which is the condition of the previous experiment

by Kim and Lee (2000;200 I) , to obtain the de

tailed flow structures around the circular cylinder,

the three dimensional computation with a high

resolution in space and time should be carried

out. However, since it is difficult to calculate the
high Reynolds number flow with the present

computing capability, the computation is carried

out at Re=l~.

4. Results and Discussion

Table 2 shows the computed time-averaged

drag force coefficient (CD), the amplitude of the

oscillating lift force (CL AmP')' and the Strouhal
number(Sn) under each type of the Lorentz

forces. In the table, CDP and CDf represent the
form and frictional drag force coefficients, re

spectively. In the following discussion, the sim

plified notations of P, N, 0, and I are used for the



372 Seong-Tae Kim and Choung Mook Lee

(a) Nol.F (i) Case-12

(b) ea",,-Pl

-<> <5 'c"(c) Case-P2
---

-0 <rJ (I)~(d) Case-P3

~ .«." i
->

(e) Case-Ol

(f) Case-02

(g) Case-D3

(n) Case-I3+0J, ...
(0) Case-IF

(p) Case-DF

Fig.l0 Computed instantaneous streamlines at N=20 and Re=lcr

Positive LF, the Negative LF, the Outward
normal LF, and the Inward-normal LF, re
spectively. The forcing regions of 8 =20° - 80°, 70°
- 130°, and 120°- 180° are denoted by attaching
the number of I, 2 and 3, respectively, after the
types of the forcing directions of P, 0, I, and N.
It is written as Case-PI, for example, when the
Positive LF is applied in the region of 8=20°
-80°_

The most effective forcing modes for drag re-

duction turned out to be the forcing types in the
order ofCase-I3+01, Case-D and Case-Ol. But
in the case of Case-I3+01, the power consump
tion for the drag reduction is twice the magnitude
of the other two cases, so that, in respect of the
power efficiency, it can be judged that the Case
- 13+ 0 1 is not so effective as the other two types
of the Lorentz forcing. Despite the drag reduction,
there occurs a slight increase in the amplitude of
the oscillating lift force under the Lorentz
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forcings of Case-D and Case-Ol , Figures 6 and

7 show the instantaneous pressure contours and

the corresponding flow patterns with respect to

time under the Lorentz forcings of Case-D and

Case-Of, respectively. In the figure, t=O
indicates the case without Lorentz forcing. With

the value of the Strouhal number as 0.16, the

period for one vortex shedding process becomes

t=6.25, but the results are shown only up to t=
2.8 in the figures to illustrate a part of one-cycle

time histories. Although the two forcing types of

Case-D (Fig. 6) and Case-Ot (Fig. 7) show an

obvious difference in the pressure and drag CTable

2), they show similar flow patterns. It is interesti

ng to note that the both cases show the reduction

in the drag force in different manners. That is, the
forcing of Case-D increases the pressure in the

rear part of the cylinder while the forcing of Case

-0 I decreases the pressure in the front part of the

cylinder, thus reducing the drag of the cylinder. In

Fig. 6, it is shown that the streamline is displaced

to some extent to the outer region of the circular

cylinder possibly due to the increase of the surface
pressure in the rear part of the cylinder under the

Lorentz forcing of Case-B. Another difference

found between the two forcing types is in slight

difference in the size of the evolving vortex behind

the Circular cylinder; otherwise the time
-dependent flow patterns are very similar to each

other.
Under the Lorentz forcings of Case-P2 and

Case-P3, the amplitude of the lift force oscillation
is found to be reduced nearly to zero while the

total drag force is changed slightly due to the

contribution of the increased frictional drag. But

when the Reynolds number increases, the portion

of the frictional drag force is reduced and the total

drag force becomes nearly the same as the form
drag. Consequently, the increase in the frictional

drag force due to the Positive Lorentz forcing can

be neglected compared to the decrease in the form

drag. It is expected that the Positive Lorentz

forcing can be a useful type for stabilizing the

flow and reducing the drag force.

In Fig. 8 the computed instantaneous pressure

distribution and the streamline patterns are
shown for Case-P2. Due to the Positive Lorentz

forcing the streamlines are maintained to be
attached to the cylinder surface to the far rear of

the cylinder, thus moving the separation point to

the rearside of the cylinder as well. As a result, the
large vortex ( ( *) at t=O) in Fig. 8, generated

periodically when the Lorentz force is absent, is
quickly swept away from the cylinder immediate

ly after the commencement of the Lorentz forcing

and thereafter the large vortex no longer

reappears. As the time increases after the Lorentz
forcing, the flow becomes steady and the pressure

distributions at the upper and the lower sides of

the cylinder become symmetric. The flow becomes

stable and the width of the wake region is also

reduced significantly.

Figure 9 shows the instantaneous pressure
contours and the corresponding streamline pat

terns under the Lorentz force of Case-N 1. For the

case of the Negative Lorentz force, it has been

reported by Kim and Lee (2000) that the flow was

considerably disturbed and the drag force was

drastically increased. In the present computation
for Re= lQ2, as shown in Table 2, although the

Lorentz forcings of Case-N2 and Case-N 3 reduce

the frictional force, the total drag force is greatly

increased due to the increased form drag. It is

interesting to note in Fig. 9 the large twin vortices

generated in the upper and the lower sides of the
fore part of the circular cylinder.

The instantaneous streamline patterns for all

the 15 types of the Lorentz forces are compared in

Fig. 10. The instantaneous time tchosen for each

case in Fig. 10 is the instant at which the
streamline under the Lorentz forcing of Case-P3

becomes attached up to rear stagnation point to

form a symmetrical flow pattern as in the

potential flow. Under the Lorentz forcing of Case

-PI, there appears no noticeable reduction in the

width of the wake region. On the other hand,
under the Lorentz forcing of Case-P3, the flow is

no longer separated and the streamline is attached

to the entire surface of the cylinder. For Cases

-01, 02 and 03, the flow patterns are slightly

changed although the flow is still oscillating,
except for the forcing type of Case-03 which

shows a slight reduction of the oscillating

amplitude. Similar flow patterns are found in
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Figs. lO(h-j) under the Inward-normal LF
where the flow exhibits an oscillating pattern. The
Lorentz forcing of Case-I2 shows the reattached
flow pattern with small reduction in the
oscillating amplitude of the wake. It is interesting
to find that the instantaneous flow patterns for
Case-Oz and Case-D are similar to each other
and the patterns for Case-OS and Case-I2 are
also similar to each other. The flow is greatly
disturbed under the Negative Lorentz forcing of
Cases-Nl r- N3. In the present computation, any
distinct changes in flow pattern are not found
under the Lorentz forcing of Inward-normal LF
and Outward-normal LF applied in the entire
cylinder circumference (8 =0- 360°) (Case-IF
and Case-OF, respectively).

5. Conclusion

The present numerical results confirmed quali
tatively the experimental results of Kim and Lee
(2000) that the Positive Lorentz force has the
effect of suppressing the flow separation, reducing
the drag, and stabilizing the flow by making the
symmetric flow pattern between the upper and
lower sides of the circular cylinder.

In the condition of the present computation, it
can be concluded that the effect of decreasing the
drag force can be achieved by the Lorentz forcing
types of (a) Outward-normal LF at 8=20°-80°
from the fore stagnation point, (b) Inward-nor
mal LF at 8=120°-1800, (c) Positive LFs at
8=70°-130° and 8=120°-180°, and (d) sim
ultaneous forcing of the Outward-normal and
Inward-normal LFs, respectively in the region of
8=20°-80° and 8=1200-1800«a)+(b)). But
it is found that the simultaneous forcing of (d)
does not show the linearly superposed effect of the
drag reductions of the independent two forcings,
i.e. 6.CD(a+b) <6.CD(a) +6.CD(b). It can be
suggested that the effect of suppressing the
oscillating lift force be achieved by inducing a
symmetrical flow between the top and bottom
regions of the circular cylinder. This effect can be
obtained by the forcing modes of Positive LFs at
8=70°-130° and 8=120°-180°.

It is expected that the results can provide useful

information for efficient controlling of the flow
around bluff bodies by using electromagnetic
force.

Acknowledgements

The authors gratefully acknowledge for the
supports of Advanced Fluids Engineering Re
search Center, Pohang University of Science &
Technology, and Samsung Heavy Industries.

References

Engelman, M. S. and Jamnia, M. -A., 1990,
"Transient Flow Past a Circular Cylinder: A
Benchmark Solution," Int'l J. for Numerical
Methods in Fluids, Vol. 11, pp. 985-1000.

Hayase, T., Humphrey, J. A. C. and Greif, R.,
1992, "A Consistently Formulated QUICK
Scheme for Fast and Stable Convergence Using
Finite-volume Iterative Calculation Procedures,"
1. Comput. Phys., Vol. 98, pp. 108-118.

Henoch, C. W. and Meng, 1. C. S., 1991,
"Magnetohydrodynamic Turbulent Boundary
Layer Control Using External Direct Current
Crossed Surface Poles," Annual Report IR/ lED,
Naval Underwater System Center, TD 800.

Karniadakis, G. E. and Triantafyllou, G. S.,
1989, "Frequency Selection And Asymptotic
States in Laminar Wakes," 1. Fluid Mech., Vol.
199, pp. 441-469.

Kim, S. J. and Lee, Choung M., 1997,
"Experimental Investigation of Flow
Characteristics of a Magnetohydrodynamic
(MHD) Duct of Fan-Shaped Cross-Section,"
KSME J. (Korean Soc. of Mech. Eng.), Vol. 11,
No.5, pp. 295-302.

Kim, S. J. and Lee, Choung M., 2000, "Investi
gation of the Flow around a Circular Cylinder
under the Influence of an Electromagnetic Field,"
Experiments in Fluids, Vol. 28, pp. 252-260.

Kim, S. J. and Lee, Choung M., 2001, "Control
of Flows around a Circular Cylinder: Suppres
sion of Oscillatory Lift Force," Fluid Dynamics
Research, 29, pp. 47-63.

Meng, J. C. S., 1998, "Engineering Insight of
Near-wall Microturbulence for Drag Reduction



Numerical Investigation of Cross-Flow Around a Circular Cylinder at a Low-Reynolds-«- 375

and Derivation of a Design Map for Seawater
Electromagnetic Turbulence Control," Proc. of
the International Symposium on Seawater Drag

Reduction, Newport, Rhode Island, USA, pp. 359
-367.

Norberg, C., 1994, "An Experimental Investi
gation of the Flow around a Circular Cylinder:
Influence of Aspect Ratio," J. Fluid Mech., Vol.
258, pp. 287-316.

Nosenchuck, D. M. and D. Brown, 1993,
"Discrete Spatial Control of Wall Shear Stress in
a Turbulent Boundary Layer," Proc. Near Wall

Turbulent Flows, Elsevier, pp. 689-698.
Persillon, H. and Braza, M., 1998, "Physical

Analysis of the Transitionto Turbulence in the
Wake of a Circular Cylinder by Three
-dimensional Navier-Stokes Simulation," J. Flu
id Mech., Vol. 365, pp. 23-88.

Williamson, C. H. K., 1988, "Defining a Uni
versal and Continuous Strouhal-Reynolds Num
ber Relationship for the Laminar Vortex
Shedding of a Circular Cylinder," Phys. Fluids,
Vol. 31, pp. 2742-2744.


